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Abstract

Many classification algorithms were originally designed for fixed-size vectors. Recent ap-
plications in text and speech processing and computational biology require however the
analysis of variable-length sequences and more generally weighted automata. An approach
widely used in statistical learning techniques such as Support Vector Machines (SVMs) is
that of kernel methods, due to their computational efficiency in high-dimensional feature
spaces. We introduce a general family of kernels based on weighted transducers or rational
relations, rational kernels, that extend kernel methods to the analysis of variable-length
sequences or more generally weighted automata. We show that rational kernels can be
computed efficiently using a general algorithm of composition of weighted transducers and
a general single-source shortest-distance algorithm.

Not all rational kernels are positive definite and symmetric (PDS), or equivalently verify
the Mercer condition, a condition that guarantees the convergence of training for discrimi-
nant classification algorithms such as SVMs. We present several theoretical results related
to PDS rational kernels. We show that under some general conditions these kernels are
closed under sum, product, or Kleene-closure and give a general method for constructing a
PDS rational kernel from an arbitrary transducer defined on some non-idempotent semir-
ings. We give the proof of several characterization results that can be used to guide the
design of PDS rational kernels. We also show that some commonly used string kernels or
similarity measures such as the edit-distance, the convolution kernels of Haussler, and some
string kernels used in the context of computational biology are specific instances of rational
kernels. Our results include the proof that the edit-distance over a non-trivial alphabet
is not negative definite, which, to the best of our knowledge, was never stated or proved
before.

Rational kernels can be combined with SVMs to form efficient and powerful techniques
for a variety of classification tasks in text and speech processing, or computational biology.
We describe examples of general families of PDS rational kernels that are useful in many
of these applications and report the result of our experiments illustrating the use of ratio-
nal kernels in several difficult large-vocabulary spoken-dialog classification tasks based on
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deployed spoken-dialog systems. Our results show that rational kernels are easy to design
and implement and lead to substantial improvements of the classification accuracy.

1. Introduction

Many classification algorithms were originally designed for fixed-length vectors. Recent
applications in text and speech processing and computational biology require however the
analysis of variable-length sequences and more generally weighted automata. Indeed, the
output of a large-vocabulary speech recognizer for a particular input speech utterance, or
that of a complex information extraction system combining several knowledge sources for a
specific input query, is typically a weighted automaton compactly representing a large set
of alternative sequences. The weights assigned by the system to each sequence are used
to rank different alternatives according to the models the system is based on. The error
rate of such complex systems is still too high in many tasks to rely only on their one-best
output, thus it is preferable instead to use the full weighted automata which contain the
correct result in most cases.

An approach widely used in statistical learning techniques such as Support Vector Ma-
chines (SVMs) (Boser et al., 1992, Cortes and Vapnik, 1995, Vapnik, 1998) is that of kernel
methods, due to their computational efficiency in high-dimensional feature spaces. We in-
troduce a general family of kernels based on weighted transducers or rational relations,
rational kernels, that extend kernel methods to the analysis of variable-length sequences
or more generally weighted automata.1 We show that rational kernels can be computed
efficiently using a general algorithm of composition of weighted transducers and a general
single-source shortest-distance algorithm.

Not all rational kernels are positive definite and symmetric (PDS), or equivalently verify
the Mercer condition (Berg et al., 1984), a condition that guarantees the convergence of
training for discriminant classification algorithms such as SVMs. We present several theo-
retical results related to PDS rational kernels. We show that under some general conditions
these kernels are closed under sum, product, or Kleene-closure and give a general method
for constructing a PDS rational kernel from an arbitrary transducer defined on some non-
idempotent semirings. We give the proof of several characterization results that can be used
to guide the design of PDS rational kernels.

We also study the relationship between rational kernels and some commonly used string
kernels or similarity measures such as the edit-distance, the convolution kernels of Haus-
sler (Haussler, 1999), and some string kernels used in the context of computational biology
(Leslie et al., 2003). We show that these kernels are all specific instances of rational kernels.
In each case, we explicitly describe the corresponding weighted transducer. These trans-
ducers are often simple and efficient for computing kernels. Their diagram provides more
insight into the definition of kernels and can guide the design of new kernels. Our results
also include the proof of the fact that the edit-distance over a non-trivial alphabet is not
negative definite, which, to the best of our knowledge, was never stated or proved before.

Rational kernels can be combined with SVMs to form efficient and powerful techniques
for a variety of applications to text and speech processing, or to computational biology. We
describe examples of general families of PDS rational kernels that are useful in many of

1. We have described in shorter publications part of the material presented here (Cortes et al., 2003a,b,c,d).
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Semiring Set ⊕ ⊗ 0 1

Boolean {0, 1} ∨ ∧ 0 1

Probability R+ + × 0 1

Log R ∪ {−∞,+∞} ⊕log + +∞ 0

Tropical R ∪ {−∞,+∞} min + +∞ 0

Table 1: Semiring examples. ⊕log is defined by: x⊕log y = − log(e−x + e−y).

these applications. We report the result of our experiments illustrating the use of rational
kernels in several difficult large-vocabulary spoken-dialog classification tasks based on de-
ployed spoken-dialog systems. Our results show that rational kernels are easy to design and
implement and lead to substantial improvements of the classification accuracy.

The paper is organized as follows. In the following section, we introduce the notation
and some preliminary algebraic and automata-theoretic definitions used in the remaining
sections. Section 3 introduces the definition of rational kernels. In Section 4, we present
general algorithms that can be used to compute rational kernels efficiently. Section 5 intro-
duces the classical definitions of positive definite and negative definite kernels and gives a
number of novel theoretical results, including the proof of some general closure properties
of PDS rational kernels, a general construction of PDS rational kernels starting from an
arbitrary weighted transducer, a characterization of acyclic PDS rational kernels, and the
proof of the closure properties of a very general class of PDS rational kernels. Section 6
studies the relationship between some commonly used kernels and rational kernels. Finally,
the results of our experiments in several spoken-dialog classification tasks are reported in
Section 7.

2. Preliminaries

In this section, we present the algebraic definitions and notation needed to introduce rational
kernels.

A system (K,�, e) is a monoid if it is closed under �: a � b ∈ K for all a, b ∈ K; �
is associative: (a � b) � c = a � (b � c) for all a, b, c ∈ K; and e is an identity for �:
a� e = e� a = a, for all a ∈ K. When additionally � is commutative: a� b = b� a for all
a, b ∈ K, then (K,�, e) is said to be a commutative monoid.

Definition 1 (Kuich and Salomaa (1986)) A system (K,⊕,⊗, 0, 1) is a semiring if:
(K,⊕, 0) is a commutative monoid with identity element 0; (K,⊗, 1) is a monoid with iden-
tity element 1; ⊗ distributes over ⊕; and 0 is an annihilator for ⊗: for all a ∈ K, a⊗ 0 =
0 ⊗ a = 0.

Thus, a semiring is a ring that may lack negation. Table 1 lists some familiar semirings.
In addition to the Boolean semiring and the probability semiring, two semirings often used
in applications are the log semiring which is isomorphic to the probability semiring via a
log morphism, and the tropical semiring which is derived from the log semiring using the
Viterbi approximation.
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Definition 2 A weighted finite-state transducer T over a semiring K is an 8-tuple T =
(Σ,∆, Q, I, F,E, λ, ρ) where: Σ is the finite input alphabet of the transducer; ∆ is the finite
output alphabet; Q is a finite set of states; I ⊆ Q the set of initial states; F ⊆ Q the set of
final states; E ⊆ Q× (Σ ∪ {ε}) × (∆ ∪ {ε}) × K ×Q a finite set of transitions; λ : I → K

the initial weight function; and ρ : F → K the final weight function mapping F to K.

Weighted automata can be formally defined in a similar way by simply omitting the input
or output labels.

Given a transition e ∈ E, we denote by p[e] its origin or previous state and n[e] its
destination state or next state, and w[e] its weight. A path π = e1 · · · ek is an element
of E∗ with consecutive transitions: n[ei−1] = p[ei], i = 2, . . . , k. We extend n and p
to paths by setting: n[π] = n[ek] and p[π] = p[e1]. A cycle π is a path whose origin
and destination coincide: p[π] = n[π]. A weighted automaton or transducer is said to be
acyclic if it admits no cycle. A successful path in a weighted automaton or transducer
M is a path from an initial state to a final state. The weight function w can also be
extended to paths by defining the weight of a path as the ⊗-product of the weights of its
constituent transitions: w[π] = w[e1] ⊗ · · · ⊗ w[ek]. We denote by P (q, q′) the set of paths
from q to q′ and by P (q, x, y, q′) the set of paths from q to q′ with input label x ∈ Σ∗

and output label y ∈ ∆∗. These definitions can be extended to subsets R,R′ ⊆ Q, by:
P (R, x, y,R′) = ∪q∈R, q′∈R′P (q, x, y, q′). We denote by w[M ] the ⊕-sum of the weights of
all the successful paths of the automaton or transducer M , when that sum is well-defined
and in K. A transducer T is regulated if the output weight associated by T to any pair of
input-output string (x, y) by:

[[T ]](x, y) =
⊕

π ∈P (I,x,y,F )

λ(p[π]) ⊗ w[π] ⊗ ρ[n[π]] (1)

is well-defined and in K. [[T ]](x, y) = 0 when P (I, x, y, F ) = ∅. If for all q ∈ Q, the
sum

⊕

π∈P (q,ε,ε,q)w[π] is in K, then T is regulated. In particular, when T does not have
any ε-cycle, that is a cycle labeled with ε (both input and output labels), it is regulated.
In the following, we will assume that all the transducers considered are regulated. Regu-
lated weighted transducers are closed under the rational operations: ⊕-sum, ⊗-product and
Kleene-closure which are defined as follows for all transducers T1 and T2 and (x, y) ∈ Σ∗×∆∗:

[[T1 ⊕ T2]](x, y) = [[T1]](x, y) ⊕ [[T2]](x, y) (2)

[[T1 ⊗ T2]](x, y) =
⊕

x=x1x2,y=y1y2

[[T1]](x1, y1) ⊗ [[T2]](x2, y2) (3)

[[T ∗]](x, y) =
∞
⊕

n=0

T n(x, y) (4)

where T n stands for the (n− 1)-⊗-product of T with itself.
For any transducer T , we denote by T−1 its inverse, that is the transducer obtained

from T by transposing the input and output labels of each transition and the input and
output alphabets.

Composition is a fundamental operation on weighted transducers that can be used
in many applications to create complex weighted transducers from simpler ones. Let
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T1 = (Σ,∆, Q1, I1, F1, E1, λ1, ρ1) and T2 = (∆,Ω, Q2, I2, F2, E2, λ2, ρ2) be two weighted
transducers defined over a commutative semiring K such that ∆, the output alphabet of T1,
coincides with the input alphabet of T2. Then, the result of the composition of T1 and T2 is
a weighted transducer T1 ◦ T2 which, when it is regulated, is defined for all x, y by (Berstel,
1979, Eilenberg, 1974, Salomaa and Soittola, 1978, Kuich and Salomaa, 1986):2

[[T1 ◦ T2]](x, y) =
⊕

z ∈∆∗

[[T1]](x, z) ⊗ [[T2]](z, y) (5)

Note that a transducer can be viewed as a matrix over a countable set Σ∗ × ∆∗ and com-
position as the corresponding matrix-multiplication.

The definition of composition extends naturally to weighted automata since a weighted
automaton can be viewed as a weighted transducer with identical input and output labels for
each transition. The corresponding transducer associates [[A]](x) to a pair (x, x), and 0 to all
other pairs. Thus, the composition of a weighted automaton A1 = (∆, Q1, I1, F1, E1, λ1, ρ1)
and a weighted transducer T2 = (∆,Ω, Q2, I2, F2, E2, λ2, ρ2) is simply defined for all x, y in
∆∗ × Ω∗ by:

[[A1 ◦ T2]](x, y) =
⊕

x∈∆∗

[[A1]](x) ⊗ [[T2]](x, y) (6)

when these sums are well-defined and in K. Intersection of two weighted automata is the
special case of composition where both operands are weighted automata, or equivalently
weighted transducers with identical input and output labels for each transition.

3. Definitions

Let X and Y be non-empty sets. A function K : X × Y → R is said to be a kernel over
X × Y . This section introduces rational kernels, which are kernels defined over sets of
strings or weighted automata.

Definition 3 A kernel K over Σ∗ × ∆∗ is said to be rational if there exist a weighted
transducer T = (Σ,∆, Q, I, F,E, λ, ρ) over the semiring K and a function ψ : K → R such
that for all x ∈ Σ∗ and y ∈ ∆∗:3

K(x, y) = ψ([[T ]](x, y)) (7)

K is then said to be defined by the pair (ψ, T ).

This definition and many of the results presented in this paper can be generalized by
replacing the free monoids Σ∗ and ∆∗ with arbitrary monoids M1 and M2. Also, note
that we are not making any particular assumption about the function ψ in this definition.
In general, it is an arbitrary function mapping K to R.

Figure 1 shows an example of a weighted transducer over the probability semiring corre-
sponding to the gappy n-gram kernel with decay factor λ as defined by (Lodhi et al., 2001).
Such gappy n-gram kernels are rational kernels (Cortes et al., 2003c).

2. We use a matrix notation for the definition of composition as opposed to a functional notation.
3. We chose to call these kernels “rational” because their definition is based on rational relations or rational

transductions (Salomaa and Soittola, 1978, Kuich and Salomaa, 1986) represented by a weighted trans-
ducer. The mathematical counterpart of weighted automata and transducers are also called rational

power series Berstel and Reutenauer (1988) which further justifies our terminology.
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0

a:ε/1
b:ε/1 1ε:a/1

ε:b/1

2a:a/0.01
b:b/0.01

ε:a/1
ε:b/1

a:a/0.01

b:b/0.01
a:ε/0.1
b:ε/0.1 3

ε:a/0.1

ε:b/0.1

4/1a:a/0.01
b:b/0.01

ε:a/0.1
ε:b/0.1

a:a/0.01

b:b/0.01
a: ε/1
b:ε/1

5/1ε:a/1
ε:b/1

ε:a/1
ε:b/1

Figure 1: Gappy bigram rational kernel with decay factor λ = .1. Bold face circles represent
initial states and double circles indicate final states. Inside each circle, the first
number indicates the state number, the second, at final states only, the value of
the final weight function ρ at that state. Arrows represent transitions. They are
labeled with an input and an output symbol separated by a colon and followed
by their corresponding weight after the slash symbol.

Rational kernels can be naturally extended to kernels over weighted automata. Let A
be a weighted automaton defined over the semiring K and the alphabet Σ and B a weighted
automaton defined over the semiring K and the alphabet ∆, K(A,B) is defined by:

K(A,B) = ψ





⊕

(x,y)∈Σ∗×∆∗

[[A]](x) ⊗ [[T ]](x, y) ⊗ [[B]](y)



 (8)

for all weighted automata A and B such that the ⊕-sum:
⊕

(x,y)∈Σ∗×∆∗

[[A]](x) ⊗ [[T ]](x, y) ⊗ [[B]](y)

is well-defined and in K. This sum is always defined and in K when A and B are acyclic
weighted automata since the sum then runs over a finite set. It is defined for all weighted
automata in all closed semirings (Kuich and Salomaa, 1986) such as the tropical semiring. In
the probability semiring, the sum is well-defined for all A, B, and T representing probability
distributions. When K(A,B) is defined, Equation 8 can be equivalently written as:

K(A,B) = ψ





⊕

(x,y)∈Σ∗×∆∗

[[A ◦ T ◦ B]](x, y)



 = ψ(w[A ◦ T ◦ B]) (9)

The next section presents a general algorithm for computing rational kernels.

4. Algorithms

The algorithm for computing K(x, y), or K(A,B), for any two acyclic weighted automata,
or for any two weighted automata such that the sum above is well-defined, is based on two
general algorithms that we briefly present: composition of weighted transducers to combine
A, T , and B, and a general shortest-distance algorithm in a semiring K to compute the
⊕-sum of the weights of all successful paths of the composed transducer.
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0

1a:a/1.61

2b:b/0.22

a:b/0
b:a/0.69

3/0b:a/0.69 0

a:a/1.2

1a:b/2.3
b:a/0.51

b:b/0.92

2/0a:a/0.51

(a) (b)

0

1a:a/2.81

4a:b/3.91 2

b:a/0.73

a:a/0.51

a:b/0.92 3/0b:a/1.2

(c)

Figure 2: (a) Weighted transducer T1 over the log semiring. (b) Weighted transducer T2

over the log semiring. (c) T1 ◦ T2, result of the composition of T1 and T2.

4.1 Composition of weighted transducers

There exists a general and efficient composition algorithm for weighted transducers which
takes advantage of the sparseness of the input transducers (Pereira and Riley, 1997, Mohri
et al., 1996). States in the composition T1 ◦ T2 of two weighted transducers T1 and T2 are
identified with pairs of a state of T1 and a state of T2. Leaving aside transitions with ε
inputs or outputs, the following rule specifies how to compute a transition of T1 ◦ T2 from
appropriate transitions of T1 and T2:

4

(q1, a, b, w1, q2) and (q′1, b, c, w2, q
′
2) =⇒ ((q1, q

′
1), a, c, w1 ⊗ w2, (q2, q

′
2)) (10)

In the worst case, all transitions of T1 leaving a state q1 match all those of T2 leaving state q′1,
thus the space and time complexity of composition is quadratic: O((|Q1|+|E1|)(|Q2|+|E2|)).
Figure 2 illustrates the algorithm when applied to the transducers of Figure 2 (a)-(b) defined
over the log semiring.

4.2 Single-source shortest distance algorithm over a semiring

Given a weighted automaton or transducer M , the shortest-distance from state q to the set
of final states F is defined as the ⊕-sum of all the paths from q to F :

d[q] =
⊕

π∈P (q,F )

w[π] ⊗ ρ[n[π]] (11)

when this sum is well-defined and in K. This is always the case when the semiring is k-closed
or when M is acyclic (Mohri, 2002), the case of interest in our experiments. There exists a
general algorithm for computing the shortest-distance d[q] (Mohri, 2002). The algorithm is
based on a generalization to k-closed semirings of the relaxation technique used in classical

4. See (Pereira and Riley, 1997, Mohri et al., 1996) for a detailed presentation of the algorithm including
the use of a transducer filter for dealing with ε-multiplicity in the case of non-idempotent semirings.
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single-source shortest-paths algorithms. WhenM is acyclic, the complexity of the algorithm
is linear: O(|Q|+(T⊕+T⊗)|E|), where T⊕ denotes the maximum time to compute ⊕ and T⊗
the time to compute ⊗ (Mohri, 2002). The algorithm can then be viewed as a generalization
of Lawler’s algorithm (Lawler, 1976) to the case of an arbitrary semiring K. It is then based
on a generalized relaxation of the outgoing transitions of each state of M visited in reverse
topological order (Mohri, 2002).

Let K be a rational kernel and let T be the associated weighted transducer. Let A and
B be two acyclic weighted automata or, more generally, two weighted automata such that
the sum in Equation 9 is well-defined and in K. A and B may represent just two strings
x, y ∈ Σ∗ or may be any complex weighted automata. By definition of rational kernels
(Equation 9) and the shortest-distance (Equation 11), K(A,B) can be computed by:

1. Constructing the composed transducer N = A ◦ T ◦ B.

2. Computing w[N ], by determining the shortest-distance from the initial states of N to
its final states using the shortest-distance algorithm just described.

3. Computing ψ(w[N ]).

When A and B are acyclic, the shortest-distance algorithm is linear and the total com-
plexity of the algorithm is O(|T ||A||B|+Φ), where |T |, |A|, and |B| denote respectively the
size of T , A and B and Φ the worst case complexity of computing ψ(x), x ∈ K. If we assume
that Φ can be computed in constant time as in many applications, then the complexity of
the computation of K(A,B) is quadratic with respect to A and B: O(|T ||A||B|).

5. Theory of PDS and NDS Rational Kernels

In learning techniques such as those based on SVMs, we are particularly interested in ker-
nels that are positive definite symmetric (PDS), or, equivalently, kernels verifying Mercer’s
condition, which guarantee the existence of a Hilbert space and a dot product associated to
the kernel considered. This ensures the convergence of the training algorithm to a unique
optimum. Thus, in what follows, we will focus on theoretical results related to the con-
struction of rational kernels that are PDS. Due to the symmetry condition, the input and
output alphabets Σ and ∆ will coincide for the underlying transducers associated to the
kernels.

This section reviews a number of results related to general PDS kernels, that is the
class of all kernels that have the Mercer property (Berg et al., 1984). It also gives novel
proofs and results in the specific case of PDS rational kernels. These results can be used
to combine PDS rational kernels to design new PDS rational kernels or to construct a
PDS rational kernel. Our proofs and results are original and are not just straightforward
extensions of those existing in the case of general PDS kernels. This is because, for example,
a closure property for PDS rational kernels must guarantee not just that the PDS property
is preserved but also that the rational property is retained. Our original results include a
general construction of PDS rational kernels from arbitrary weighted transducers, a number
of theorems related to the converse, and a study of the negative definiteness of some rational
kernels.

8
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Definition 4 Let X be a non-empty set. A function K : X ×X → R is said to be a PDS
kernel if it is symmetric (K(x, y) = K(y, x) for all x, y ∈ X) and

n
∑

i,j=1

cicjK(xi, xj) ≥ 0 (12)

for all n ≥ 1, {x1, . . . , xn} ⊆ X and {c1, . . . , cn} ⊆ R.

It is clear from classical results of linear algebra that K is a PDS kernel iff the matrix
K(xi, xj)i,j≤n for all n ≥ 1 and all {x1, . . . , xn} ⊆ X is symmetric and all its eigenvalues
are non-negative.

PDS kernels can be used to construct other families of kernels that also meet these
conditions (Schölkopf and Smola, 2002). Polynomial kernels of degree p are formed from
the expression (K+a)p, and Gaussian kernels can be formed as exp(−d2/σ2) with d2(x, y) =
K(x, x)+K(y, y)−2K(x, y). The following sections will provide other ways of constructing
PDS rational kernels.

5.1 General Closure Properties of PDS Kernels

The following theorem summarizes general closure properties of PDS kernels (Berg et al.,
1984).

Theorem 5 Let X and Y be two non-empty sets.

1. Closure under sum: Let K1,K2 : X×X → R be PDS kernels, then K1+K2 : X×X →
R is a PDS kernel.

2. Closure under product: Let K1,K2 : X × X → R be PDS kernels, then K1 · K2 :
X ×X → R is a PDS kernel.

3. Closure under tensor product: Let K1 : X × X → R and K2 : Y × Y → R be
PDS kernels, then their tensor product K1 �K2 : (X × Y ) × (X × Y ) → R, where
K1 �K2((x1, y1), (x2, y2)) = K1(x1, x2) ·K2(y1, y2) is a PDS kernel.

4. Closure under pointwise limit: Let Kn : X ×X → R be a PDS kernel for all n ∈ N

and assume that limn→∞Kn(x, y) exists for all x, y ∈ X, then K defined by K(x, y) =
limn→∞Kn(x, y) is a PDS kernel.

5. Closure under composition with a power series: Let K : X ×X → R be a PDS kernel
such that |K(x, y)| < ρ for all (x, y) ∈ X ×X. Then if the radius of convergence of
the power series S =

∑∞
n=0 anx

n is ρ and an ≥ 0 for all n ≥ 0, the composed kernel
S ◦K is a PDS kernel. In particular, if K : X ×X → R is a PDS kernel, then so is
exp(K).

In particular, these closure properties all apply to PDS kernels that are rational, e.g., the
sum or product of two PDS rational kernels is a PDS kernel. However, Theorem 5 does not
guarantee the result to be a rational kernel. In the next section, we examine precisely the
question of the closure properties of PDS rational kernels (under rational operations).
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5.2 Closure Properties of PDS Rational Kernels

In this section, we assume that a fixed function ψ is used in the definition of all the rational
kernels mentioned. We denote by KT the rational kernel corresponding to the transducer
T and defined for all x, y ∈ Σ∗ by KT (x, y) = ψ([[T ]](x, y)).

Theorem 6 Let Σ be a non-empty alphabet. The following closure properties hold for PDS
rational kernels.

1. Closure under ⊕-sum: Assume that ψ : (K,⊕, 0) → (R,+, 0) is a monoid morphism.5

Let KT1
,KT2

: Σ∗ × Σ∗ → R be PDS rational kernels, then KT1⊕T2
: Σ∗ × Σ∗ → R is

a PDS rational kernel and KT1⊕T2
= KT1

+KT2
.

2. Closure under ⊗-product: Assume that ψ : (K,⊕,⊗, 0, 1) → (R,+,×, 0, 1) is a
semiring morphism. Let KT1

,KT2
: Σ∗ × Σ∗ → R be PDS rational kernels, then

KT1⊗T2
: Σ∗ × Σ∗ → R is a PDS rational kernel.

3. Closure under Kleene-closure: Assume that ψ : (K,⊕,⊗, 0, 1) → (R,+,×, 0, 1) is a
continuous semiring morphism. Let KT : Σ∗×Σ∗ → R be a PDS rational kernel, then
KT ∗ : Σ∗ × Σ∗ → R is a PDS rational kernel.

Proof The closure under ⊕-sum follows directly from Theorem 5 and the fact that for all
x, y ∈ Σ∗:

ψ([[T1]](x, y) ⊕ [[T2]](x, y)) = ψ([[T1]](x, y)) + ψ([[T2]](x, y))

when ψ : (K,⊕, 0) → (R,+, 0) is a monoid morphism. For the closure under ⊗-product,
when ψ is a semiring morphism, for all x, y ∈ Σ∗:

ψ([[T1 ⊗ T2]](x, y)) =
∑

x1x2=x,y1y2=y

ψ([[T1]](x1, y1)) · ψ([[T2]](x2, y2)) (13)

=
∑

x1x2=x,y1y2=y

KT1
�KT2

((x1, x2), (y1, y2))

By Theorem 5, since KT1
and KT2

are PDS kernels, their tensor product KT1
�KT2

is a
PDS kernel and there exists a Hilbert space H ⊆ R

Σ∗

and a mapping u → φu such that
KT1

�KT2
(u, v) = 〈φu, φv〉 (Berg et al., 1984). Thus

ψ([[T1 ⊗ T2]](x, y)) =
∑

x1x2=x,y1y2=y

〈φ(x1,x2), φ(y1 ,y2)〉 (14)

=

〈

∑

x1x2=x

φ(x1,x2),
∑

y1y2=y

φ(y1,y2)

〉

Since a dot product is positive definite, this equality implies that KT1⊗T2
is a PDS kernel.

A similar proof is given by Haussler (1999). The closure under Kleene-closure is a direct

5. A monoid morphism ψ : (K,⊕, 0) → (R,+, 0) is a function verifying ψ(x ⊕ y) = ψ(x) + ψ(y) for all
x, y ∈ K, and ψ(0) = 0. A semiring morphism ψ is a function ψ : (K,⊕,⊗, 0, 1) → (R,+,×, 0, 1) further
verifying ψ(x⊗ y) = ψ(x) · ψ(y) for all x, y ∈ K, and ψ(1) = 1.

10
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consequence of the closure under ⊕-sum and ⊗-product of PDS rational kernels and the
closure under pointwise limit of PDS kernels (Theorem 5).

Theorem 6 provides a general method for constructing complex PDS rational kernels from
simpler ones. PDS rational kernels defined to model specific prior knowledge sources can
be combined using rational operations to create a more general PDS kernel.

In contrast to Theorem 6, PDS rational kernels are not closed under composition. This
is clear since the ordinary matrix multiplication does not preserve positive definiteness in
general.

The next section studies a general construction of PDS rational kernels using composi-
tion.

5.3 A General Construction of PDS Rational Kernels

In this section, we assume that ψ : (K,⊕,⊗, 0, 1) → (R,+,×, 0, 1) is a continuous semiring
morphism. This limits the choice of the semiring associated to the weighted transducer defin-
ing a rational kernel, since it needs in particular to be commutative and non-idempotent.6

Our study of PDS rational kernels in this section is thereby limited to such semirings. This
should not leave the reader with the incorrect perception that all PDS rational kernels are
defined over non-idempotent semirings though. As already mentioned before, in general,
the function ψ can be chosen arbitrarily and needs not impose any algebraic property on
the semiring used.

We show that there exists a general way of constructing a PDS rational kernel from any
weighted transducer T . The construction is based on composing T with its inverse T −1.

Proposition 7 Let T = (Σ,∆, Q, I, F,E, λ, ρ) be a weighted finite-state transducer defined
over the semiring (K,⊕,⊗, 0, 1). Assume that the weighted transducer T ◦ T −1 is regulated,
then (ψ, T ◦ T−1) defines a PDS rational kernel over Σ∗ × Σ∗.

Proof Denote by S the composed transducer T ◦T−1. Let K be the rational kernel defined
by S. By definition of composition

K(x, y) = ψ([[S]](x, y)) = ψ

(

⊕

z∈∆∗

[[T ]](x, z) ⊗ [[T ]](y, z)

)

(15)

for all x, y ∈ Σ∗. Since ψ is a continuous semiring morphism, for all x, y ∈ Σ∗

K(x, y) = ψ([[S]](x, y)) =
∑

z∈∆∗

ψ([[T ]](x, z)) · ψ([[T ]](y, z)) (16)

For all n ∈ N and x, y ∈ Σ∗, define Kn(x, y) by:

Kn(x, y) =
∑

|z|≤n

ψ([[T ]](x, z)) · ψ([[T ]](y, z)) (17)

6. If K is idempotent, for any x ∈ K, ψ(x) = ψ(x⊕x) = ψ(x)+ψ(x) = 2ψ(x), which implies that ψ(x) = 0
for all x.

11
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where the sum runs over all strings z ∈ ∆∗ of length less than or equal to n. Clearly, Kn

defines a symmetric kernel. For any l ≥ 1 and any x1, . . . , xl ∈ Σ∗, define the matrix Mn

by: Mn = (Kn(xi, xj))i≤l,j≤l. Let z1, z2, . . . , zm be an arbitrary ordering of the strings of
length less than or equal to n. Define the matrix A by:

A = (ψ([[T ]](xi, zj)))i≤l;j≤m (18)

By definition of Kn, Mn = AAt. The eigenvalues of AAt are non-negative for any rectan-
gular matrix A, thus Kn is a PDS kernel. Since K is a pointwise limit of Kn, K(x, y) =
limn→∞Kn(x, y), by Theorem 5, K is a PDS kernel. This ends the proof of the proposition.

The next propositions provide results related to the converse of Proposition 7. We denote
by IdR the identity function over R.

Proposition 8 Let S = (Σ,Σ, Q, I, F,E, λ, ρ) be an acyclic weighted finite-state transducer
over (K,⊕,⊗, 0, 1) such that (ψ, S) defines a PDS rational kernel on Σ∗ × Σ∗, then there
exists a weighted transducer T over the probability semiring such that (IdR, T ◦T−1) defines
the same rational kernel.

Proof Let S be an acyclic weighted transducer verifying the hypotheses of the proposition.
Let X ⊂ Σ∗ be the finite set of strings accepted by S. Since S is symmetric, X×X is the set
of pairs of strings (x, y) defining the rational relation associated with S. Let x1, x2, . . . , xn

be an arbitrary numbering of the elements of X. Define the matrix M by:

M = (ψ([[S]](xi, xj)))1≤i≤n, 1≤j≤n (19)

Since S defines a PDS rational kernel, M is a symmetric matrix with non-negative eigen-
values, i.e., M is symmetric positive semi-definite. The Cholesky decomposition extends
to the case of semi-definite matrices (Dongarra et al., 1979): there exists an upper trian-
gular matrix R = (Rij) with non-negative diagonal elements such that M = RRt. Let
Y = {y1, . . . , yn} be an arbitrary subset of n distinct strings of Σ∗. Define the weighted
transducer T over the X × Y by:

[[T ]](xi, yj) = Rij (20)

for all i, j, 1 ≤ i, j ≤ n. By definition of composition, [[T ◦ T −1]](xi, xj) = ψ([[S]](xi, xj)) for
all i, j, 1 ≤ i, j ≤ n. Thus, T ◦ T−1 = ψ(S), which proves the claim of the proposition.

Note that when the matrix M introduced in the proof is positive definite, that is when the
eigenvalues of the matrix associated with S are all positive, then Cholesky’s decomposition
and thus the weights associated to the input strings of T are unique.

Assume that the same continuous semiring morphism ψ is used in the definition of all
the rational kernels.

Proposition 9 Let Θ be the subset of the weighted transducers over (K,⊕,⊗, 0, 1) such that
for any S ∈ Θ, (ψ, S) defines a PDS rational kernel and there exists a weighted transducer
T = (Σ,∆, Q, I, F,E, λ, ρ) over the probability semiring such that (IdR, T ◦ T−1) defines
the same rational kernel as (ψ, S). Then Θ is closed under ⊕-sum, ⊗-product, and Kleene-
closure.

12
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Proof Let S1, S2 ∈ Θ, we will show that S1 ⊕ S2 ∈ Θ, S1 ⊗ S2 ∈ Θ, and S∗
1 ∈ Θ. By defi-

nition, there exist T1 = (Σ,∆1, Q1, I1, F1, E1, λ1, ρ1) and T2 = (Σ,∆2, Q2, I2, F2, E2, λ2, ρ2)
such that:

K1 = T1 ◦ T
−1
1 and K2 = T2 ◦ T

−1
2 (21)

where K1 (K2) is the PDS rational kernel defined by (ψ, S1) (resp. (ψ, S2)). Let u be
an alphabetic morphism mapping ∆2 to a new alphabet ∆′

2 such that ∆1 ∩ ∆′
2 = ∅. u

is clearly a rational transduction (Berstel, 1979) and can be represented by a finite-state
transducer U . Thus, we can define a new weighted transducer T ′

2 by: T ′
2 = T2 ◦ U =

(Σ,∆′
2, Q2, I2, F2, E

′
2, λ2, ρ2), which only differs from T2 by some renaming of its output

labels. This does not affect the result of the composition with the inverse transducer since
U ◦ U−1 is the identity mapping over ∆∗

2:

T ′
2 ◦ T

′−1
2 = T2 ◦ U ◦ (U−1 ◦ T−1

2 ) = T2 ◦ T
−1
2 = K2 (22)

Since, T1 and T2 have distinct output alphabets, their output labels cannot match, thus:

T1 ◦ T
′−1
2 = ∅ and T ′

2 ◦ T
−1
1 = ∅ (23)

Let T = T1 + T ′
2, in view of Equation 22 and Equation 23:

T ◦ T−1 = (T1 + T ′
2) ◦ (T1 + T ′

2)
−1 = (T1 ◦ T

−1
1 ) + (T ′

2 ◦ T
′−1
2 ) = K1 +K2 (24)

Since the same continuous semiring morphism ψ is used for the definition of all the rational
kernels in Θ, by Theorem 6, K1 +K2 is a PDS rational kernel defined by (ψ, S1 ⊕ S2) and
S1 ⊕ S2 is in Θ. Similarly, define T ′ as T ′ = T1 · T

′
2.

T ′ ◦ T ′−1 = (T1 · T
′
2) ◦ (T1 · T

′
2)

−1 = (T1 ◦ T
−1
1 ) · (T2 ◦ T

′−1
2 ) (25)

Thus, S1 ⊗ S2 is in Θ. Let x be a symbol not in ∆1 and let ∆′
1 = ∆1 ∪ {x}. Let V be

the finite-state transducer accepting as input only ε and mapping ε to x and define T ′
1 by

T ′
1 = V · T1. Since x does not match any of the output labels of T1, T

′
1 ◦ T

′
1
−1 = T1 ◦ T1

−1

and (T ′
1 ◦ T

′
1
−1)∗ = T ′

1
∗ ◦ (T ′

1
−1)∗:

(T1 ◦ T1
−1)∗ = (T ′

1 ◦ T
′
1
−1

)∗ = T ′
1
∗
◦ (T ′

1
−1

)∗ (26)

Thus, by Theorem 6, S∗
1 is a PDS rational kernel that is in Θ.

Proposition 9 raises the following question: under the same assumptions, are all PDS ra-
tional kernels defined by a pair of the form (ψ, T ◦ T −1)? A natural conjecture is that this
is the case and that this property provides a characterization of the weighted transducers
defining PDS rational kernels. Propositions 8 and 9 both favor that conjecture. Proposition
8 shows that this holds in the acyclic case. Proposition 9 might be useful to extend this to
the general case.

In the case of PDS rational kernels defined by (IdR, S) with S a weighted transducer
over the probability semiring, the conjecture could be reformulated as: is S of the form
S = T ◦ T−1? If true, this could be viewed as a generalization of Cholesky’s decomposition
theorem to the case of infinite matrices given by weighted transducers over the probability
semiring.

This ends our discussion of PDS rational kernels. In the next section, we will examine
negative definite kernels and their relationship with PDS rational kernels.
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5.4 Negative Definite Kernels

As mentioned before, given a set X and a distance or dissimilarity measure d : X×X → R+,
a common method used to define a kernel K is the following. For all x, y ∈ X,

K(x, y) = exp(−td2(x, y)) (27)

where t > 0 is some constant typically used for normalization. Gaussian kernels are defined
in this way. However, such kernels K are not necessarily positive definite, e.g., for X = R,
d(x, y) = |x − y|p, p > 1 and t = 1, K is not positive definite. The positive definiteness of
K depends on t and the properties of the function d. The classical results presented in this
section exactly address such questions (Berg et al., 1984). They include a characterization
of PDS kernels based on negative definite kernels which may be viewed as distances with
some specific properties.7

The results we are presenting are general, but we are particularly interested in the case
where d can be represented by a rational kernel. We will use these results later when dealing
with the case of the edit-distance.

Definition 10 Let X be a non-empty set. A function K : X × X → R is said to be a
negative definite symmetric kernel (NDS kernel) if it is symmetric (K(x, y) = K(y, x) for
all x, y ∈ X) and

n
∑

i,j=1

cicjK(xi, xj) ≤ 0 (28)

for all n ≥ 1, {x1, . . . , xn} ⊆ X and {c1, . . . , cn} ⊆ R with
∑n

i=1 ci = 0.

Clearly, if K is a PDS kernel then −K is a NDS kernel, however the converse does not
hold in general. Negative definite kernels often correspond to distances, e.g., K(x, y) =
(x− y)α, x, y ∈ R, with 0 < α ≤ 2 is a negative definite kernel.

The next theorem summarizes general closure properties of NDS kernels (Berg et al.,
1984).

Theorem 11 Let X be a non-empty set.

1. Closure under sum: Let K1,K2 : X×X → R be NDS kernels, then K1+K2 : X×X →
R is a NDS kernel.

2. Closure under log and exponentiation: Let K : X × X → R be a NDS kernel with
K ≥ 0, and α a real number with 0 < α < 1, then log(1 +K),Kα : X ×X → R are
NDS kernels.

3. Closure under pointwise limit: Let Kn : X ×X → R be a NDS kernel for all n ∈ N,
then K defined by K(x, y) = limn→∞Kn(x, y) is a NDS kernel.

7. Many of the results given by Berg et al. (1984) are re-presented in (Schölkopf, 2001) with the terminology
of conditionally positive definite instead of negative definite kernels. We adopt the original terminology
used by Berg et al. (1984).

14
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The following theorem clarifies the relation between NDS and PDS kernels and provides in
particular a way of constructing PDS kernels from NDS ones (Berg et al., 1984).

Theorem 12 Let X be a non-empty set, xo ∈ X, and let K : X ×X → R be a symmetric
kernel.

1. K is negative definite iff exp(−tK) is positive definite for all t > 0.

2. Let K ′ be the function defined by:

K ′(x, y) = K(x, x0) +K(y, x0) −K(x, y) −K(x0, x0) (29)

Then K is negative definite iff K ′ is positive definite.

The theorem gives two ways of constructing a positive definite kernel using a negative
definite kernel. The first construction is similar to the way Gaussian kernels are defined.
The second construction has been put forward by (Schölkopf, 2001).

6. Relationship with some commonly used kernels or similarity measures

This section studies the relationships between several families of kernels or similarities
measures and rational kernels.

6.1 Edit-Distance

A common similarity measure in many applications is that of the edit-distance, that is the
minimal cost of a series of edit operations (symbol insertions, deletions, or substitutions)
transforming one string into the other (Levenshtein, 1966). We denote by de(x, y) the edit-
distance between two strings x and y over the alphabet Σ with cost 1 assigned to all edit
operations.

Proposition 13 Let Σ be a non-empty finite alphabet and let de be the edit-distance over
Σ, then de is a symmetric rational kernel. Furthermore, (1): de is not a PDS kernel, and
(2): de is a NDS kernel iff |Σ| = 1.

Proof The edit-distance between two strings, or weighted automata, can be represented
by a simple weighted transducer over the tropical semiring (Mohri, 2003). Since the edit-
distance is symmetric, de is a symmetric rational kernel. Figure 3(a) shows the correspond-
ing transducer when the alphabet is Σ = {a, b}. The cost of the alignment between two
sequences can also be computed by a weighted transducer over the probability semiring
(Mohri, 2003), see Figure 3(b).

Let a ∈ Σ, then the matrix (de(xi, xj))1≤i,j≤2 with x1 = ε and x2 = a has a negative
eigenvalue (−1), thus de is not a PDS kernel.

When |Σ| = 1, the edit-distance simply measures the absolute value of the difference of
length between two strings. A string x ∈ Σ∗ can then be viewed as a vector of the Hilbert
space R

∞. Denote by ‖ · ‖ the corresponding norm. For all x, y ∈ Σ∗:

de(x, y) = ‖x− y‖

15
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a:a/0
b:b/0
a:b/1
b:a/1
ε:a/1
ε:b/1
a:ε/1
b:ε/1

0

a:a/1
a:b/1
b:a/1
b:b/1
ε:a/1
ε:b/1
a:ε/1
b:ε/1

1/1

b:ε/1

b:a/1

ε:a/1
ε:b/1
a:ε/1
a:b/1

a:a/1
a:b/1
b:a/1
b:b/1
ε:a/1
ε:b/1
a:ε/1
b:ε/1

(a) (b)

Figure 3: (a) Weighted transducer over the tropical semiring representing the edit-distance
over the alphabet Σ = {a, b}. (b) Weighted transducer over the probability
semiring computing the cost of alignments over the alphabet Σ = {a, b}.

The square distance ‖ · ‖2 is negative definite, thus by Theorem 11, de = (‖ · ‖2)1/2 is also
negative definite.

Assume now that |Σ| > 1. We show that exp(−de) is not PDS. By theorem 12, this
implies that de is not negative definite. Let x1, · · · , x2n be any ordering of the strings of
length n over the alphabet {a, b}. Define the matrix Mn by:

Mn = (exp(−de(xi, xj)))1≤i,j,≤2n (30)

Figure 4(a) shows the smallest eigenvalue αn of Mn as a function of n. Clearly, there are
values of n for which αn < 0, thus the edit-distance is not negative definite. Table 4(b)
provides a simple example with five strings of length 3 over the alphabet Σ = {a, b, c, d}
showing directly that the edit-distance is not negative definite. Indeed, it is easy to verify
that:

∑5
i=1

∑5
j=1 cicjK(xi, xj) = 2

3 > 0.

To our knowledge, this is the first statement and proof of the fact that de is not NDS
for |Σ| > 1. This result has a direct consequence on the design of kernels in computational
biology, often based on the edit-distance or other related similarity measures. The edit-
distance and other related similarity measures are often used in computational biology.
When |Σ| > 1, Proposition 13 shows that de is not NDS. Thus, there exists t > 0 for which
exp(−tde) is not PDS. Similarly, d2

e is not NDS since otherwise by Theorem 11, de = (d2
e)

1/2

would be NDS.

16



www.manaraa.com

Rational Kernels: Theory and Algorithms

*

*

*
*

* * *
*

all strings of length n

sm
al

le
st

 e
ig

en
va

lu
e

2 4 6 8

0.0

0.2

0.4

0.6

i 1 2 3 4 5

xi abc bad dab adc bcd

ci 1 1 −2
3 −2

3 −2
3

(a) (b)

Figure 4: (a) Smallest eigenvalue of the matrix Mn = (exp(−de(xi, xj)))1≤i,j,≤2n as a func-
tion of n. (b) Example demonstrating that the edit-distance is not negative
definite.

6.2 Haussler’s Convolution Kernels for Strings

D. Haussler describes a class of kernels for strings built by applying iteratively convolution
kernels (Haussler, 1999). We show that these convolution kernels for strings are specific
instances of rational kernels. Haussler (1999) defines the convolution of two string kernels
K1 andK2 over the alphabet Σ as the kernel denoted by K1?K2 and defined for all x, y ∈ Σ∗

by:

K1 ? K2(x, y) =
∑

x1x2=x,y1y2=y

K1(x1, y1) ·K2(x2, y2) (31)

Clearly, when K1 and K2 are given by weighted transducers over the probability semiring,
this definition coincides with that of the product (or concatenation) of transducers (Equa-
tion 3). Haussler (1999) also introduces for 0 ≤ γ < 1 the γ-infinite iteration of a mapping
H : Σ∗ × Σ∗ → R by:

H∗
γ = (1 − γ)

∞
∑

n=1

γn−1H(n) (32)

where H(n) = H ?H(n−1) is the result of the convolution of H with itself n− 1 times. Note
that H∗

γ = 0 for γ = 0.

Lemma 14 For 0 < γ < 1, the γ-infinite iteration of a rational transduction H : Σ∗×Σ∗ →
R can be defined in the following way with respect to the Kleene †-operator:

H∗
γ =

1 − γ

γ
(γH)† (33)

Proof Haussler’s convolution simply corresponds to the product (or concatenation) in the
case of rational transductions. Thus, for 0 < γ < 1, by definition of the †-operator:

(γH)† =

∞
∑

n=1

(γH)n =

∞
∑

n=1

γnHn =
γ

1 − γ

∞
∑

n=1

(1 − γ)γn−1Hn =
γ

1 − γ
H∗

γ
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0 1
K2(1 − γ)

2
K1γ

K2

Figure 5: Haussler’s convolution kernels KH for strings: specific instances of rational ker-
nels. K1, (K2), corresponds to a specific weighted transducer over the probability
semiring and modeling substitutions (resp. insertions).

Given a probability distribution p over all symbols of Σ, Haussler’s convolution kernels for
strings are defined by:

KH(x, y) = γK2 ? (K1 ? K2)
?
γ + (1 − γ)K2

where K1 is the specific polynomial PDS rational transduction over the probability semiring
defined by: K1(x, y) =

∑

a∈Σ p(x|a)p(y|a)p(a) and models substitutions, and K2 another
specific PDS rational transduction over the probability semiring modeling insertions.

Proposition 15 For any 0 ≤ γ < 1, Haussler’s convolution kernels KH coincide with the
following special cases of rational kernels:

KH = (1 − γ)[K2(γK1K2)
∗] (34)

Proof As mentioned above, Haussler’s convolution simply corresponds to concatenation in
this context. When γ = 0, by definition, KH is reduced to K2 which is a rational transducer
and the proposition’s formula above is satisfied. Assume now that γ 6= 0. By lemma 14,
KH can be re-written as:

KH = γK2(K1K2)
?
γ + (1 − γ)K2 = γK2

1 − γ

γ
(γK1K2)

† + (1 − γ)K2 (35)

= (1 − γ)[K2(γK1K2)
† +K2] = (1 − γ)[K2(γK1K2)

∗]

Since rational transductions are closed under rational operations, KH also defines a rational
transduction. Since K1 and K2 are PDS kernels, by theorem 6, KH defines a PDS kernel.

The transducer of Figure 5 illustrates the convolution kernels for strings proposed by
Haussler. They correspond to special cases of rational kernels whose mechanism is clarified
by the figure: the kernel corresponds to an insertion with weight (1 − γ) modeled by
K2 followed by any number of sequences of substitutions modeled by K1 and insertions
modeled by K2 with weight γ. Clearly, there are many other ways of defining kernels
based on weighted transducers with more complex definitions and perhaps more data-driven
definitions.
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Figure 6: Mismatch kernel K(k,m) = Tk,m ◦ T−1
k,m (Leslie et al., 2003) with k = 3 and m = 2

and with Σ = {a, b}. The transducer T3,2 defined over the probability semiring
is shown. All transition weights and final weights are equal to one. Note that
states 3, 6, and 8 of the transducer are equivalent and thus can be merged and
similarly that states 2 and 5 can then be merged as well.

6.3 Other Kernels Used in Computational Biology

In this section we show the relationship between rational kernels and another class of kernels
used in computational biology.

A family of kernels, mismatch string kernels, was introduced by (Leslie et al., 2003) for
protein classification using SVMs. Let Σ be a finite alphabet, typically that of amino acids
for protein sequences. For any two sequences z1, z2 ∈ Σ∗ of same length (|z1| = |z2|), we
denote by d(z1, z2) the total number of mismatching symbols between these sequences. For
all m ∈ N, we define the bounded distance dm between two sequences of same length by:

dm(z1, z2) =

{

1 if (d(z1, z2) ≤ m)
0 otherwise

(36)

and for all k ∈ N, we denote by Fk(x) the set of all factors of x of length k:

Fk(x) = {z : x ∈ Σ∗zΣ∗, |z| = k}

For any k,m ∈ N with m ≤ k, a (k,m)-mismatch kernel K(k,m) : Σ∗ ×Σ∗ → R is the kernel
defined over protein sequences x, y ∈ Σ∗ by:

K(k,m)(x, y) =
∑

z1∈Fk(x), z2∈Fk(y), z∈Σk

dm(z1, z) dm(z, z2) (37)

Proposition 16 For any k,m ∈ N with m ≤ k, the (k,m)-mismatch kernel K(k,m) :
Σ∗ × Σ∗ → R is a PDS rational kernel.

Proof Let M , S, and D be the weighted transducers over the probability semiring defined
by:

M =
∑

a∈Σ

(a, a) S =
∑

a6=b

(a, b) D =
∑

a∈Σ

(a, ε) (38)
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M associates weight 1 to each pair of identical symbols of the alphabet Σ, S associates 1 to
each pair of distinct or mismatching symbols, and D associates 1 to all pairs with second
element ε.

For i, k ∈ N with 0 ≤ i ≤ k, Define the shuffle of S i and Mk−i, denoted by Si ttMk−i,
as the the sum over all products made of factors S and M with exactly i factors S and
k − i factors M . As a finite sum of products of S and M , S i ttMk−i is rational. Since
weighted transducers are closed under rational operations the following defines a weighted
transducer T over the probability semiring for any k,m ∈ N with m ≤ k: Tk,m = D∗RD∗

with R =
∑m

i=0 S
i ttMk−i. Consider two sequences z1, z2 such that |z1| = |z2| = k. By

definition of M and S and the shuffle product, for any i, with 0 ≤ i ≤ m,

[[Si ttMk−i]](z1, z2) =

{

1 if (d(z1, z2) = i)
0 otherwise

(39)

Thus, [[R]](z1, z2) =

m
∑

i=0

Si ttMk−i(z1, z2) =

{

1 if (d(z1, z2) ≤ m)
0 otherwise

= dm(z1, z2)

By definition of the product of weighted transducers, for any x ∈ Σ∗ and z ∈ Σk,

Tk,m(x, z) =
∑

x=uvw,z=u′v′w′

[[D∗]](u, u′) [[R]](v, v′) [[D∗]](w,w′) (40)

=
∑

v∈Fk(x),z=v′

[[R]](v, v′) =
∑

v∈Fk(x)

dm(v, z)

It is clear from the definition of Tk,m that Tk,m(x, z) = 0 for all x, z ∈ Σ∗ with |z| > k.
Thus, by definition of the composition of weighted transducer, for all x, y ∈ Σ∗

[[Tk,m ◦ Tk,m
−1]](x, y) =

∑

z1∈Fk(x), z2∈Fk(y), z∈Σ∗

dm(z1, z) dm(z, z2) (41)

=
∑

z1∈Fk(x), z2∈Fk(y), z∈Σk

dm(z1, z) dm(z, z2) = K(k,m)(x, y)

By proposition 7, this proves that K(k,m) is a PDS rational kernel.

Figure 6 shows T3,2, a simple weighted transducer over the probability semiring that can
be used to compute the mismatch kernel K(3,2) = T3,2 ◦ T3,2

−1. Such transducers provide
a compact representation of the kernel and are very efficient to use with the composition
algorithm already described in (Cortes et al., 2003c). The transitions of these transducers
can be defined implicitly and expanded on-demand as needed for the particular input strings
or weighted automata. This substantially reduces the space needed for their representation,
e.g., a single transition with labels x : y, x 6= y can be used to represent all transitions with
similar labels ((a : b), a, b ∈ Σ, with a 6= b). Similarly, composition can also be performed
on-the-fly. Furthermore, the transducer of Figure 6 can be made more compact since it
admits several states that are equivalent.
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7. Applications and Experiments

Rational kernels can be used in a variety of applications ranging from computational biology
to optical character recognition. We have applied them successfully to a number of speech
processing tasks including the identification from speech of traits, or voice signatures, such as
emotion (Shafran et al., 2003). This section describes some of our most recent applications
to spoken-dialog classification.

We first introduce a general family of PDS rational kernels relevant to spoken-dialog
classification tasks that we used in our experiments, then discuss the spoken-dialog classi-
fication problem and report our experimental results.

7.1 A General Family of PDS Kernels: n-gram Kernels

A rational kernel can be viewed as a similarity measure between two sequences or weighted
automata. One may for example consider two utterances to be similar when they share
many common n-gram subsequences. The exact transcriptions of the utterances are not
available but we can use the word lattices output by the recognizer instead.

A word lattice is a weighted automaton over the log semiring that compactly represents
the most likely transcriptions of a speech utterance. Each path of the automaton is labeled
with a sequence of words whose weight is obtained by adding the weights of the constituent
transitions. The weight assigned by the lattice to a sequence of words can often be inter-
preted as the log-likelihood of that transcription based on the models used by the recognizer.
More generally, the weights are used to rank possible transcriptions, the sequence with the
lowest weight being the most favored transcription.

A word lattice A can be viewed as a probability distribution PA over all strings s ∈ Σ∗.
Modulo a normalization constant, the weight assigned by A to a string x is [[A]](x) =
− logPA(x). Denote by |s|x the number of occurrences of a sequence x in the string s. The
expected count or number of occurrences of an n-gram sequence x in s for the probability
distribution PA is:

c(A, x) =
∑

s

PA(s)|s|x

Two lattices output by a speech recognizer can be viewed as similar when the sum of the
product of the expected counts they assign to their common n-gram sequences is sufficiently
high. Thus, we define an n-gram kernel kn for two lattices A1 and A2 by:

kn(A1, A2) =
∑

|x|=n

c(A1, x) c(A2, x) (42)

The kernel kn is a PDS rational kernel of type T ◦ T−1 and it can be computed efficiently.

Indeed, there exists a simple weighted transducer T that can be used to computed
c(A1, x) for all n-gram sequences x ∈ Σ∗. Figure 7 shows that transducer in the case of
bigram sequences (n = 2) and for the alphabet Σ = {a, b}. The general definition of T is:

T = (Σ × {ε})∗ (
∑

x∈Σ

{x} × {x})n (Σ × {ε})∗ (43)
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0

a:ε/1
b:ε/1

1a:a/1
b:b/1

2/1a:a/1
b:b/1

a:ε/1
b:ε/1

Figure 7: Weighted transducer T computing expected counts of bigram sequences of a word
lattice with Σ = {a, b}.

kn can be written in terms of the weighted transducer T as:

kn(A1, A2) = w[(A1 ◦ T ) ◦ (T−1 ◦ A2)] (44)

= w[(A1 ◦ (T ◦ T−1) ◦ A2)] (45)

which shows that it is a rational kernel whose associated weighted transducer is T ◦T −1. In
view of Proposition 7, kn is a PDS rational kernel. Furthermore, the general composition
algorithm and shortest-distance algorithm described in Section 4 can be used to compute kn

efficiently. The size of the transducer T is O(n|Σ|) but in practice, a lazy implementation
can be used to simulate the presence of the transitions of T labeled with all elements of
Σ. This reduces the size of the machine used to O(n). Thus, since the complexity of
composition is quadratic (Mohri et al., 1996, Pereira and Riley, 1997) and since the general
shortest distance algorithm just mentioned is linear for acyclic graphs such as the lattices
output by speech recognizers (Mohri, 2002), the worst case complexity of the algorithm is:
O(n2 |A1| |A2|).

By Theorem 6, the sum of two kernels kn and km is also a PDS rational kernel. We
define an n-gram rational kernel Kn as the PDS rational kernel obtained by taking the sum
of all km, with 1 ≤ m ≤ n:

Kn =

n
∑

m=1

km

Thus, the feature space associated with Kn is the set of all m-gram sequences with m ≤ n.
n-gram kernels are used in our experiments in spoken-dialog classification.

7.2 Spoken-Dialog Classification

7.2.1 Definition

One of the key tasks of spoken-dialog systems is classification. This consists of assigning,
out of a finite set, a specific category to each speech utterance based on the transcription
of that utterance by a speech recognizer. The choice of possible categories depends on the
dialog context considered. A category may correspond to the type of billing problem in the
context of a dialog related to billing, or to the type of problem raised by the speaker in the
context of a hot-line service. Categories are used to direct the dialog manager in formulating
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Dataset Number of Training Testing Number of ASR word
classes size size n-grams accuracy

HMIHY 0300 64 35551 5000 24177 72.5%
VoiceTone1 97 29561 5537 22007 70.5%
VoiceTone2 82 9093 5172 8689 68.8%

Table 2: Key characteristics of the three datasets used in the experiments. The fifth column
displays the total number of unigrams, bigrams, and trigrams found in the one-
best output of the ASR for the utterances of the training set, that is the number
of features used by BoosTexter or SVMs used with the one-best outputs.

a response to the speaker’s utterance. Classification is typically based on features such as
relevant key words or key sequences used by a machine learning algorithm.

The word error rate of conversational speech recognition systems is still too high in
many tasks to rely only on the one-best output of the recognizer (the word error rate in the
deployed services we have experimented with is about 70%, as we will see later). However,
the word lattices output by speech recognition systems may contain the correct transcription
in most cases. Thus, it is preferable to use instead the full word lattices for classification.

The application of classification algorithms to word lattices raises several issues. Even
small word lattices may contain billions of paths, thus the algorithms cannot be generalized
by simply applying them to each path of the lattice. Additionally, the paths are weighted
and these weights must be used to guide appropriately the classification task. The use of
rational kernels solves both of these problems since they define kernels between weighted
automata and since they can be computed efficiently (Section 4).

7.2.2 Description of Tasks and Datasets

We did a series of experiments in several large-vocabulary spoken-dialog tasks using rational
kernels with a twofold objective: to improve classification accuracy in those tasks, and to
evaluate the impact on classification accuracy of the use a word lattice rather than the
one-best output of the automatic speech recognition (ASR) system.

The first task we considered is that of a deployed customer-care application (HMIHY
0300). In this task, users interact with a spoken-dialog system via the telephone, speaking
naturally, to ask about their bills, their calling plans, or other similar topics. Their responses
to the open-ended prompts of the system are not constrained by the system, they may be
any natural language sequence. The objective of the spoken-dialog classification is to assign
one or several categories or call-types, e.g., Billing Credit, or Calling Plans, to the users’
speech utterances. The set of categories is finite and is limited to 64 classes. The calls are
classified based on the user’s response to the first greeting prompt: “Hello, this is AT&T.
How may I help you?”.

Table 7.2.2 indicates the size of the HMIHY 0300 datasets we used for training and
testing. The training set is relatively large with more than 35,000 utterances, this is an
extension of the one we used in our previous classification experiments with HMIHY 0300
(Cortes et al., 2003c). In our experiments, we used the n-gram rational kernels described
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Figure 8: Classification error rate as a function of rejection rate in HMIHY 0300.

in the previous section with n = 3. Thus, the feature set we used was that of all n-grams
with n ≤ 3. Table 7.2.2 indicates the total number of distinct features of this type found in
the datasets. The word accuracy of the system based on the best hypothesis of the speech
recognizer is 72.5%. This motivated our use of the word lattices, which may contain the
correct transcription in most cases. The average number of transitions of a word lattice in
this task was about 260.

Table 7.2.2 reports similar information for two other datasets, VoiceTone1, and Voice-
Tone2. These are more recently deployed spoken-dialog systems in different areas, e.g.,
VoiceTone1 is a task where users interact with a system related to health-care with a larger
set of categories (97). The size of the VoiceTone1 datasets we used and the word accuracy
of the recognizer (70.5%) make this task otherwise similar to HMIHY 0300. The datasets
provided for VoiceTone2 are significantly smaller with a higher word error rate. The word
error rate is indicative of the difficulty of classification task since a higher error rate implies
a more noisy input. The average number of transitions of a word lattice in VoiceTone1 was
about 210 and in VoiceTone2 about 360.

Each utterance of the dataset may be labeled with several classes. The evaluation is
based on the following criterion: it is considered an error if the highest scoring class given
by the classifier is none of these labels.

7.2.3 Implementation and Results

We used the AT&T FSM Library (Mohri et al., 2000) and the GRM Library (Allauzen
et al., 2004) for the implementation of the n-gram rational kernels Kn used. We used
these kernels with SVMs, using a general learning library for large-margin classification
(LLAMA), which offers an optimized multi-class recombination of binary SVMs (Haffner
et al., 2003). Training time took a few hours on a single processor of a 2.4GHz Intel Pentium
processor Linux cluster with 2GB of memory and 512 KB cache.

In our experiments, we used the trigram kernel K3 with a second-degree polynomial.
Preliminary experiments showed that the top performance was reached for trigram kernels
and that 4-gram kernels, K4, did not significantly improve the performance. We also found
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Figure 9: Classification error rate as a function of rejection rate in (a) VoiceTone1 and (b)
VoiceTone2 .

that the combination of a second-degree polynomial kernel with the trigram kernel signifi-
cantly improves performance over a linear classifier, but that no further improvement could
be obtained with a third-degree polynomial.

We used the same kernels in the three datasets previously described and applied them
to both the speech recognizer’s single best hypothesis (one-best results), and to the full
word lattices output by the speech recognizer. We also ran, for the sake of comparison, the
BoosTexter algorithm (Schapire and Singer, 2000) on the same datasets by applying it to
the one-best hypothesis. This served as a baseline for our experiments.

Figure 7.2.3 shows the result of our experiments in the HMIHY 0300 task. It gives
classification error rate as a function of rejection rate (utterances for which the top score is
lower than a given threshold are rejected) in HMIHY 0300 for: BoosTexter, SVM combined
with our kernels when applied to the one-best hypothesis, and SVM combined with kernels
applied to the full lattices.

SVM with trigram kernels applied to the one-best hypothesis leads to better classification
than BoosTexter everywhere in the range of 0-40% rejection rate. The accuracy is about
2-3% absolute value better than that of BoosTexter in the range of interest for this task,
which is roughly between 20% and 40% rejection rate. The results also show that the
classification accuracy of SVMs combined with trigram kernels applied to word lattices is
consistently better than that of SVMs applied to the one-best alone by about 1% absolute
value.

Figure 7.2.3 shows the results of our experiments in the VoiceTone1 and VoiceTone2
tasks using the same techniques and comparisons. As observed previously, in many re-
gards, VoiceTone1 is similar to the HMIHY 0300 task, and our results for VoiceTone1 are
comparable to those for HMIHY 0300. The results show that the classification accuracy of
SVMs combined with trigram kernels applied to word lattices is consistently better than
that of BoosTexter, by more than 4% absolute value at about 20% rejection rate. They
also demonstrate more clearly the benefits of the use of the word lattices for classification
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in this task. This advantage is even more manifest for the VoiceTone2 task for which the
speech recognition accuracy is lower. VoiceTone2 is also a harder classification task as can
be seen by the comparison of the plots of Figure 7.2.3. The classification accuracy of SVMs
with kernels applied to lattices is more than 6% absolute value better than that of Boos-
Texter near 40% rejection rate, and about 3% better than SVMs applied to the one-best
hypothesis.

Thus, our experiments in spoken-dialog classification in three distinct large-vocabulary
tasks demonstrates that using rational kernels with SVMs consistently leads to very com-
petitive classifiers. They also show that their application to the full word lattices instead
of the single best hypothesis output by the recognizer systematically improves classification
accuracy.

8. Conclusion

We presented a general framework based on weighted transducers, rational kernels, to extend
kernel methods to the analysis of variable-length sequences or more generally weighted
automata. The transducer representation provides a very compact representation benefiting
from existing and well-studied optimizations. It further avoids the design of special-purpose
algorithms for the computation of the kernels covered by the framework of rational kernels.
A single general and efficient algorithm was presented to compute effectively all rational
kernels. Thus, it is sufficient to implement that algorithm and let different instances of
rational kernels be given by the weighted transducers that define them. A general framework
is also likely to help understand better kernels over strings or automata and their relation.

We gave the proof of several characterization results and closure properties for PDS
rational kernels. These results can be used to design a complex PDS rational kernel from
simpler ones or from an arbitrary weighted transducer over an appropriate semiring, or from
negative definite kernels.

We also gave a study of the relation between rational kernels and several kernels or
similarity measures introduced by others. Rational kernels provide a unified framework
for the design of computationally efficient kernels for strings or weighted automata. The
framework includes in particular pair-HMM string kernels (Durbin et al., 1998, Watkins,
1999), Haussler’s convolution kernels for strings, the path kernels of Takimoto and Warmuth
(2003), and other classes of string kernels introduced for computational biology. We also
showed that the classical edit-distance does not define a negative definite kernel when the
alphabet contains more than one symbol, a result that to our knowledge had never been
stated or proved and that can guide the study of kernels for strings in computational biology
and other similar applications.

Our experiments in several different large-vocabulary spoken-dialog tasks show that
rational kernels can be combined with SVMs to form powerful classifiers and demonstrate
the benefits of the use of kernels applied to weighted automata. There are many other
rational kernels such as complex gappy n-gram kernels that could be explored and that
perhaps could further improve classification accuracy in such experiments. We present
elsewhere new rational kernels exploiting higher-order moments of the distribution of the
counts of sequences, moment kernels, and report the results of our experiments on the same
tasks which demonstrate a consistent gain in classification accuracy (Cortes and Mohri,
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2004). Rational kernels can be used in a similar way in many other natural language
processing, speech processing, and bioinformatics tasks.
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